

Using Data to Improve Care

NAACOS Summer 2021 Boot Camp

June 23, 2021

Using Data to Improve Care

Identifying & Addressing Gaps – Tom Hawkes

June 23, 2021

Tom Hawkes . VP of Technology Innovation Caravan Health

Tom Hawkes

As Vice President of Technology Innovation for Caravan Health, Tom is responsible for the development of technology and innovation programs and applications to support clients in their delivery of population health. He joined Caravan in January 2017.

For over 25 years Tom has been leveraging technology and data to drive innovation across industries before entering health care and joining one of the nation's largest HMO's, Kaiser Permanente, over 15 years ago. Tom held various technology leadership positions in Kaiser's California national headquarters before joining Kaiser's Hawai`i Permanente Medical Group in Honolulu to develop a custom population health application integrated into Epic. He also championed interoperability as a member of the Board of Directors for the Hawai`i Health Information Exchange and supported another local health system in Hawai`i build out their analytic and decision support systems for their inpatient and outpatient facilities and a growing Clinically Integrated Network. Tom has a Master's of Science in Environmental Management from the University of San Francisco and a Bachelors in Physical Science from the University of California, Berkeley.

Table of Contents

Introduction

Strategic Systems Using Aggregated Tools

- Evaluate HCC Gaps
- Evaluate Quality Measure Opportunities

Optimize Visits Using Patient Detail Tools

- Facesheet
- Patient Care Timeline
- AWV Opportunities

Health Care Spending in the US

Note: Noninstitutionalized civilian population age 18 and older.

Data: 2009-2011 Medical Expenditure Panel Survey (MEPS). Analysis by C.A. Salzberg, Johns Hopkins University.

How Do We Address Gaps in Care for These Patients?

Strategic Systems Using Aggregated Tools

Maximize Power of ACO Claims Data

Analyze your community's performance related to chronic conditions and preventive medicine. Where do you thrive? Where do you struggle?

Meet with clinicians to provide clinical insight for the data.

Prioritize areas for improvement and identify where you need additional resources based on which populations, providers, and practices carry the most risk.

Evaluate HCC Gaps

Quarterly Milestones 🛈

Coding for Reimbursement vs. Coding for Risk

How we use ICD-10 codes changes as we move from Fee-For-Service to value-based payment models. Understanding how to use codes in a new way will be critical to achieving shared savings.

Coding for Reimbursement

- Providers bill services based on E&M and CPT procedure codes
- Payment is based on complexity of the service
- Payment is not impacted by the complexity of the patient
- ICD-10 codes are used to demonstrate medical necessity for an individual visit

Coding for Risk

- RAF score calculated to predict patient complexity and annual spend "cost"
- Savings is achieved when the spend is less than the estimated cost for that year
- CMS "wipes the slate clean" annually, so qualifying HCC codes need to be on at least one claim each calendar year

-				
	\sim	0	r	٠
	v	U		

Dx: Hx DM, COPD, Obesity Total RAF: 0

- Low specificity, "Hx of" doesn't denote active management of disease
- ICD-10 Codes: non-specific/Hx codes are not mapped to HCC Codes
- · HCC Code: None
- · Total RAF: 0

Best:

Dx: Type 2 diabetes with diabetic nephropathy, Stage 3 CKD, morbid obesity with BMI= 41 Total RAF: 0.619

- High specificity & clear active management of disease
- ICD-10 Codes: E11.21, N18.3, Z68.41
- · HCC Code: 18, 22, 138

HCC Savings Opportunity

Evaluate Quality Measure Opportunities

www.CaravanHealth.com | Proprietary & Confidential, Not for Distribution

NAME	NUM/DEN	POINTS	PRACTICE RATE	COMMUNITY RATE
Influenza Immunization (PREV-7)	6 / 8	1.70	75.00%	75.00%
Breast Cancer Screening (PREV-5)	5/8	1.55	62.50%	62.50%
Tobacco Use: Screening and Cessation Intervention (PREV-10)	5/8	1.55	62.50%	62.50%
Controlling High Blood Pressure (HTN-2)	3 / 6	1.40	50.00%	50.00%
Colorectal Cancer Screening (PREV-6)	2/5	1.25	40.00%	40.00%
Diabetes Mellitus: Hemoglobin A1c Poor Control (DM-2) *Inverse measure, a lower rate indicates better performance	2/2	0.00	100.00%	100.00%
Falls: Screening for Future Fall Risk (CARE-2)	2/8	0.00	25.00%	Act Plan
Screening for Clinical Depression and Follow-Up Plan (PREV-12)	2/8	0.00	25.00%	Study Do

Increase Quality Measure Performance by Utilizing Nurses for Annual Wellness Visits (AWVs)

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% AAAscreenine Adv Care Planning DeplessionScreening BoneDensity Mannoetan . all Sceening ADLASSESSMENT Snoking Cessation Pheumovat HRA ■ AWV done by MD/NP AWV done by Pop Health Nurse No AWV

Gap Closure by Visit Type

Source: Caravan Health Client

Optimize Visits Using Patient Detail Tools

Put Your Patient-Detail Data to Work

Use your patient data for pre-visit planning:

- Coding opportunities (HCC)
- Open referrals
- Quality measure gaps
- Sending and receiving summaries of care

Optimize Patient Visits with a claims-based Facesheet

Optimizing Patient Visits

Identify scheduled patients Review recent lab work/screenings/ chief complaint Print and Review Patient Facesheet noting quality measures due, CCM eligibility, HCC opportunities Enter standing orders per protocol and highlight items needing follow-up by patient and provider

Patient Care Timeline

Timeline

Annual Wellness Visit (AWV) Opportunities

Filters		AWV Opportunities				
AWV OPPORTUNITIES	×		LAST AWV/IPPE	AWV/IPPE	ATTRIBUTED PROVIDER	PREDICTED RISK
500110175		AUZENNE, FLORE	08/19/2019	AWV	THADDIUS TOOHEY	High
mm/dd/yyyy		BOLEN, MANNY	08/19/2019	AWV	DUGAN SANDVIG	High
TO DATE		BONFANTI, RHODIA	12/11/2019	AWV	DUGAN SANDVIG	High
06/17/2021		DOAN, LIN	12/07/2019	AWV	DUGAN SANDVIG	High
		ELLISSA, FELIX	02/04/2020	AWV	DUGAN SANDVIG	High
Apply		HASSETT, SANSONE	11/02/2019	AWV	OBIE BARTNIK	High
		LEDAY, JEFF	12/27/2018	AWV	OBIE BARTNIK	High
		MENZER, BENJAMIN	01/26/2020	AWV	DUGAN SANDVIG	High
		MIMI, LAIRD	04/18/2019	AWV	THADDIUS TOOHEY	High
		MONTS, BURKE		IPPE	DUGAN SANDVIG	High
		SALTZMAN, CLARISSA	07/26/2019	AWV	DUGAN SANDVIG	High
		SEETON, RENE	01/27/2019	AWV	DUGAN SANDVIG	High
		4				

AWV: Reduced Cost and Increased Prevention

Among 8917 Medicare beneficiaries, an AWV was associated with significantly reduced spending on hospital acute care and outpatient services

Patients who received an AWV in the index month had a **5.7%** reduction in adjusted total healthcare costs over the ensuing 11 months

The greatest effect was seen for patients in the highest hierarchical condition category risk quartile (6.3% reduction)

Beneficiaries who had an AWV were also more likely to receive recommended preventive clinical services

Beckman et al. Medicare Annual Wellness Visit Association with Healthcare Quality and Costs. American Journal of Managed Care 2019 25(3), e76-e82

Reducing Hospital Admission Rates with Pneumonia Vaccination

Next Steps for Improving Care

System Change:

Meaningful Data

- HCC Gaps
 - By Provider
 - By Diagnosis
 - By Practice
- Quality Measures Opportunities
 - By Biggest Gaps
- Patient Facesheets
- Patient Timelines
- AWV Opportunities

- In Primary Care
- In Specialty Care

- In Coding Processes
- In Pre-Visit Planning

Optimize Visits:

Data + Strategy w/Pre-Visit Planning

- Capture chronic conditions
- Add quality measures
- Evaluate outstanding referrals

Improvement is in the Data

Improvement for patients

Better chronic disease management and documentation Decreased gaps in care (more AWVs, referring to CCM as appropriate)

Improvement for practice

Population Health Nurse working to top of license Processes to standardize and simplify visits

Improvement for systems

Impact ACO Benchmark Increase likelihood of achieving shared savings

Improvement for physicians

Processes increase comprehensive care by non-physician team Aligns patient, system, and physician goals in physician contracting

Thank You

www.caravanhealth.com | info@caravanhealth.com | 916.542.4582

- Overview of NOMS Healthcare
- Overview of NOMS Care Management
- Lessons Learned & Future Plans

NOMS Mission Statement

The mission of NOMS Healthcare is to provide excellent, personalized, teambased care.

Geographical Reach

Organization overview

247 Providers, 27 specialties, 146 locations, and over 1000 employees

Physician owned and led

The Journey to Value-Based Care

- 2011: Patient Centered Medical Home
- 2013: Advance Pay ACO
- 2015: Ancillary expansion: Imaging, Physical Therapy, Lab, ASCs
- 2017: CPC+ Track II
- 2018: BPCI-A
- 2019: ACO Track B
- 2021: ACO Track C
- 2021: Primary Care First (Newly on-boarded offices that were not previously CPC)

Providers do not have to do it alone!

Care Team Structure

- Hybrid approach
 - Decentralized Medical Assistants or LPNs
 - Centralized RNs, Social Workers, Dietitian, Smoking Cessation Specialists, Diabetes Self-Management Educator
 - Nurse Practitioner
 - Call center LPNs, Medical Assistants

Goal of Care Management

Advocates:

- Manage lower risk patients
- Help close care gaps

RN Care Managers

- Educate patients to be able to self-manage chronic conditions.
- Graduate patients once patients are confident ---Advocates take over

LSW Care Managers

- Manage resources for patients
- Help patients learn how to cope with chronic conditions

Technology Use to Guide Care Management

- Claims Data
- Registries
- HIE ADT alerts
- Data extraction
- Navina

Where to next?

- Recently hired a data scientist
- Remote patient monitoring

Using Predictive Modeling to Drive Patient Improvement and Care Gap Closures

> Yoni Dvorkis, MPH, CHDA Lead Data Scientist

> > June 2021

Atrius Health Overview

Source: Marketing, January 2018

Focus Areas for Atrius Health Data Science

Pragmatic application of advanced analytic techniques for transforming care to improve lives

Predictive Modeling – Program Enrollment

Predictive Models Paired with Interventions

- CRISPI Clinical Risk Prediction Initiative
 Predict future hospitalizations in
 - Predict future hospitalizations in next six months

Case Management/IHB program enrollment

Patient Header turns Purple for high CRISPI patients

PALI Palliative Care Advanced Illness

- predict mortality in 12 months
- date of death from CCLF files

Palliative Care consultations

PALI Score appears in Epic as Moderate (30% - 50%) or High (50%+)

Predictive Model Deep Dive: CRISPI

Covariate Groups:

	Includes:	Examples of High Risk Predictors:			
	Age	Age 76+ < 5.7x increased risk for hospitalization (next 6 month			
Democratic	BMI	BMI greater than 40 < 1.7x increase in risk			
Demographics	Smoking Status	Active Smoker < 1.4x increase in risk			
	Insurance	Medicare patient <1.5x increase in risk			
		Muscular Dystrophy <3.8x increase in risk			
Diagnoses (Epic or claims)	69 HHS-HCC diagnostic categories	Chronic Kidney Disease, Stage 5 <3.3x increase in risk			
	-	Bone/Joint/Muscle Infections/Necrosis <1.7x increase in risk			
		Patient is on Antipsychotic < 1.3x increase in risk			
Medication Profile	28 Medication therapeutic	Immunosuppressant <1.6x increase in risk			
claims)	classes	Opioid < 1.3x increase in risk			
		Chemotherapy < 1.2x increase in risk			
	Prior IP admissions, ED Visits	Prior admission in the last 30 days <2.5x increase in risk			
Deies stiliesties	Prior ICU stays visits	Prior ICU stay in the last 12 months <1.1x increase in risk			
Prior utilization	No shows	3 or more no shows in the last 12 months <1.3x increase in risk			
	OP visits	Prior OP visits in last 30 days (4 or more) <1.5x increase in risk			

Top 20 model Covariates:

	COVARIATE	OR	P VALUE		
1	MED_CFTHERAPY	6.41	0.000	**	** p <0.01
2	AGE_CAT 76+	5.70	0.000	**	* p <0.05
3	Muscular Dystrophy	3.78	0.000	**	
4	AGE_CAT 71 - 75	3.42	0.000	**	HHS-HCC diagnosis
5	MED_PTH	3.30	0.000	**	Medication class
6	Chronic Kidney Disease, Stage 5	3.27	0.000	**	Age group
7	End Stage Renal Disease	3.09	0.000	**	Priorutilization
8	AGE_CAT 66 - 70	2.96	0.000	**	
9	AGE_CAT 61- 65	2.90	0.000	**	
10	Quadriplegia	2.66	0.012	*	
11	Prior admission in the last 30 days	2.54	0.000	**	
12	Metastatic Cancer	2.50	0.000	**	
13	AGE_CAT 56-60	2.27	0.000	**	
14	Paraplegia	2.19	0.011	*	
15	End-Stage Liver Disease	2.16	0.000	**	
16	Prior hospital admission 1 - 3 months ago	1.94	0.000	**	
17	AGE_CAT 51-55	1.92	0.000	**	
18	AGE_CAT 46-50	1.85	0.000	**	
19	Hydrocephalus	1.83	0.001	**	
20	Chronic Pancreatitis	1.80	0.007	**	

*148 total predictors are included in CRISPI

Predictive Model Deep Dive: CRISPI (LOH Model)

High Risk cutoff: 30%

- **PPV** [1] 0.373212
- SENS [1] 0.122702
- SPEC [1] 0.9935267
- ACCURACY [1] 0.9670048
- C-STAT [1] 0.843

- Out of every 100 patients predicted to be hospitalized in next six months, 37 actually were
- Out of every 100 patients hospitalized, the model found 12 of them (not ideal but derived by 30% cutoff)

Out of every 100 patients, the model correctly predicted the hospitalization outcome for 96 of them

Predictive Model Deep Dive: PALI (Mortality Model)

Γ	Male (1.4)	Metastatic Cancer (17.7)	Γ	Admitted for Diabetes (9.8)
	Age 55-60 (1.2) (NS)	Lung, Brain, and Other Severe Cancers, Including Pediatric		Admitted for Failure to Thrive
	Age 61-65 (1.9)	Acute Lymphoid Leukemia (5.3)	lo l	(78.6)
	Age 66-70 (1.2) (NS)	Colorectal, Breast (Age < 50), Kidney, and Other Cancers (1.7)	zat	Admitted for Pancreatic
ŀ	Age 71-75 (1.7)	Protein-Calorie Malnutrition (2.3)	E	Disease (4.6)
	E Age 76-80 (2.3)	End-Stage Liver Disease (4.8)	٢	Admissions in Prior 6 mo.
	ğ Age 81-85 (3.7)	Cirrhosis of Liver (2.1)		(1.6)
	5 Age 86-90 (8.5)	Rheumatoid Arthritis and Specified Autoimmune Disorders		Medication: Alzheimer Agent
ľ	Age 91-95 (17)	(1.5)		(3.1)
	Age 96+ (30.1)	Parkinson's, Huntington's, and Spinocerebellar Disease, and		Medication: Antidepressant
	Medicaid (1.4) (NS)	Other Neurodegenerative Disorders (1.7)		(1.3)
	Medicare (1.6)	Non-Traumatic Coma, Brain Compression/Anoxic Damage (3.4)		Medication: Antipsychotic
	Geriatric Risk: Fecal	Ischemic or Unspecified Stroke (1.4)		(1.9)
	Control (3.1)	Hemiplegia/Hemiparesis (1.9)		Medication: Beta Blocker
	o Geriatric Risk: Decubitus	Atherosclerosis of the Extremities with Ulceration or Gangrene	atic	(1.4)
	Urcer (2.1)	(2.9) Chronic Obstructive Pulmonary Disease, Including		Medication: Chemotherapy
	Geriatric Risk: Weight Loss			(1.5)
ŀ	(2.2)	Bronchiectasis (1.6)	Γ	Medication: Dmard (3.4)
	Smoker UNK (2.6) (NS)	Fibrosis of Lung and Other Lung Disorders (1.7)		Medication:
ł	Smoker Yes (2)	Aspiration and Specified Bacterial Pneumonias and Other		Immunosuppressant (2.7)
	Lab: Albumin Reading in	Severe Lung Intections (2.7)		Medication: Loop Diuretic
	the Past 12 mo. <= 2.7	Chronic Kidney Disease, Stage 5 (4.9) Chronic Kidney Disease, Stage 5 (4.9) Chronic Kidney Disease, Severe (Stage 4) (1.4)		(2.1)
ŀ				Medication: Wakefulness-
ŀ	- Lab: BNP Reading in the			DME: Ovygon Supplies (1.6)
	Past 12 months ≥ 1201	Amputation Status, Lower Limp/Amputation Complications	N	DME: Uxygen Supplies (1.6)
L	(17.5)	(3.1)		Divit. Hospital Deu (2.4)

- Transparency helps build clinician confidence
- Population view will lead to noise at the individual patient level
- Granularity and nuance can be challenging (e.g. advanced stage COPD has no specific ICD10 code)
- Easy to explain false positive (model predicts high risk but clinician disagrees)
- Also helps explain false negatives

 clinician has a high risk patient that the model did not predict to be high risk

Use Case: Improvement of HCC Coding

- CMS-HCC weights publicly available
 - DxCG Concurrent Risk model for Medicaid/Commercial
- Calibrate weights for specific HCC's aggregated from the ICD10 billed in Epic
- Flag patients missing these HCC's in a given year
- INTERVENTION -> Outreach to patients for Annual Wellness Visit to code HCCs and address underlying clinical concerns
- Data is fed into **Epic Radar Dashboard** -> updated once a day
 - Cogito SQL allows for dataset built in Clarity to be fed back into Hyperspace so clinicians and staff don't have to log in to multiple sources.

Use Case: Improvement of HCC Coding

- Identifies patients with remaining Gaps
- Captures current RAF capture (want 100% by end of CY)
- % of population without future PCP appointments
- % of that subgroup who have not been outreached to
- Patient Detail Report linked to within this dashboard -> enables outreach activities for Population Managers

Thank you!

<u>Contact:</u> Yoni_Dvorkis@AtriusHealth.org

Questions?

